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Abstract—In this paper, we focus on the scheduling problem applications), and thus look for new ways to achieve higher
in multi-channel wireless networks, e.g., the downlink of asingle  data rates, lower latencies, and a much better user experien
cell in fourth generation (4G) OFDM-based cellular networks. Yet, an even bigger challenge fow to design such high-

Our goal is to design efficient scheduling policies that canchieve f heduli lici t | lexi
provably good performance in terms of both throughput and delay, ~P€rformance scnedufing policies at a low comp exityar

at a low complexity. While a recently developed scheduling policy, €xample, in OFDM systems, thEransmission Time Interval
called Delay Weighted Matching (DWM), has been shown to be (TTI), within which the scheduling decisions need to be made,

both rate-function delay-optimal (in the many-channel many- s typically on the order of a few milliseconds. On the other
user asymptotic regime) and throughput-optimal (in generd p,nq there are hundreds of orthogonal channels that nésed to

ﬂ]oi]k?:y??;%'&;ieég?g%rnnﬁgﬁe?nhggéﬁmggg%g (%)'a\ggl'rggs allocated to hundreds of users. Hence, the schedulingidecis

this issue, we first develop a simple greedy policy calleBelay- has to be made within a very short scheduling cycle.
based Queue-Side-Greedy (D-QSG) with a lower complexity O(n?), We consider a single-cell multi-channel system consisting

and rigorously prove that D-QSG not only achievesthroughput  of », channels and a proportionally large number of users, with
optimality, but also guaranteesnear-optimal rate-function-based ntarmjttent connectivity between each user and each @ann

delay performance. Specifically, the rate-function attained by D- . L.
QSG for any fixed integer thresholdb > 0, is no smaller than We assume that the Base Station (BS) maintains a separate

the maximum achievable rate-function by any scheduling paty ~ First-in First-out (FIFO) queue associated with each user,
for threshold b — 1. Further, we develop another simple greedy which buffers the packets for the user to download. The delay

policy called Delay-based Server-Side-Greedy (D-SSG) with an  performance that we focus on in this paper is the probability
even lower complexity O(n”), and show that D-SSG achieves 1 the |argest packet waiting time (or delay) in the system

?%éﬂa%cpﬁggﬂ?gﬁ einaio?ﬁaggt;{f‘fosrhw&%% a(l)?eD\t,(\),,\iCPo'eveexceeds a certain fixed threshold. Such a probability can be

O(n?)) with a minimal drop in the delay performance. Finally, ~estimated by its asymptotaecay-rate(or calledrate-function
we conduct numerical simulations to validate our theoretial in large-deviations theory) whembecomes large. We refer to

results in various scena_ric_)s. The simulation results ShOWhﬁt this Setting as thmany-channe| many-user asymptotic regime
our proposed greedy policies not only guarantee a near-optial A number of recent works have considered a multi-channel
rate-function, but also empirically are virtually indisti nguishable t imilar t but looked at delay f diff i
from the delay-optimal policy DWM. system similar to ours, but looked at delay from differen
perspectives. A line of works focused on queue-lengthdbase
. INTRODUCTION metrics: average queue length [1] or queue-length ratetium
) _ _ _in the many-channel many-user asymptotic regime [2]—[5]. |
In this paper, we consider the scheduling problem in @] the authors focused on minimizing cost functions over a
multi-channel wireless network, where the system has ®laighite horizon, which includes minimizing the expected tota
bandwidth that can be divided into multiple orthogonal subyeye length as a special case. The authors showed that their
bands (or channels). A practically important example ohsug o) can be achieved in two special scenarios: 1) a simple two
a multl-channe_zl network is the downllnl_< of a single cell of gger system, and 2) systems where fractional server atiocat
fourth generation _(4G) OFDM-based ergless cellular syste;s 5110wed. In [2]-[5], delay performance is evaluated bg th
(e.g9., LTE and WiMax). In such a multi-channel system, g,ee-overflow probability, and its associated rate-fiongt
key challenge ishow to design efficient scheduling policie ¢ | the asymptotic decay-rate of the probability thatiégest
that c;an simultaneously achieve high throughput and loW,eye length in the system exceeds a fixed threshold. Althoug
delay? This problem becomes extremely cr|t|(_:al m_OFDI\/tZ] and [5] proposed scheduling policies that can guarantee
systems that are expected to meet the dramatically ino@ashsth throughput optimality and rate-function optimalityiey
demands from multimedia applications with more stringeqf,fter from the following shortcomings. First, althougteth
Quality-of-Service (QoS) requirements (e.g., voice amdevi ecay-rate of the queue-overflow probability may be mapped
S . .. to that of the delay-violation probability when the arrival
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optimality strongly rely on the assumptions that the afriv&SG, has been studied in [3], [4]. There, however, the asthor
process is.i.d. not only across users, but also in timend were only able to prove a positive (queue-length) ratefionc
that per-user arrival at any time is no greater than the &rgéor restricted arrival processes that ared. not only across
channel rate. Third, even under this more restricted modekers, but also in time. On the contrary, we show that D-SSG
their proposed algorithms with rate-function optimalitye a achieves the same performance as D-QSG, by proving that
of complexity at leasO(n?). For more general models, noD-SSG and D-QSG arsample-pathequivalent under certain
algorithms with provable rate-function optimality are pided. tie-breaking rules. Thus, we are able to achieve a dramatic
Similar to this paper, another line of work [7] directlyreduction in complexity (fron©(n°) of DWM to O(n?)) with
focused on the delay performance rather than the queuéilersg minimal drop in the delay performance.
performance. The performance of delay is often harder toFinally, we conduct numerical simulations to validate our
characterize, because the delay in a queueing system oftegoretical results in various scenarios. Our simulatesuits
does not admit a Markovian representation, even for simgbow that our proposed greedy policiest only guarantee a
M/M/1 queues. The problem becomes even harder in a muhliear-optimal rate-function, but also empirically are wigily
user system with fading channels and interference constrai indistinguishable from the delay-optimal policy DWRKurther,
since the service rate for individual queues becomes more time simulation results also show th&-SSG consistently
predictable. In [7], the authors developed a schedulingeypol outperforms its queue-length-based counterpart Q-SSGIin a
called Delay Weighted Matching (DWM), which maximizesscenarios that we consider.
the sum of the delay of the packets scheduled in each timeThe remainder of the paper is organized as follows. In
slot. It has been shown that DWM is not only throughpuection Il, we describe the details of our system model and
optimal, but also rate-function delay-optimal in many casgerformance metrics. In Section Ill, we derive an upper fgbun
(i.e., maximizingdelay rate-functionrather thamueue-length on the rate-function that can be achieved by any scheduling
rate-functionas considered in [2]-[5].) However, DWM incurspolicy. Then, in Sections IV and V, we present our main
a high complexityO(n®), which renders it impractical for results on throughput optimality and near-optimal rateefion
modern OFDM systems with many channels and users (efgr, our proposed low-complexity greedy policies. Furtivee,
on the order of hundreds). Hence, scheduling policies withcanduct numerical simulations in Section VI. Finally, wekaa
lower complexity are preferred in such multi-channel syste concluding remarks in Section VII.
This leads to the following natural but important questions Due to space limitations, the detailed proofs are omittetl an
Can we find scheduling policies that have a significantigrovided in our online technical report [9].
lower complexity, with comparab!e or only slightly worse Il SYSTEM MODEL
performance? How much complexity can we reduce, and how ) ) ] )
much performance do we need to sacrifide?this paper, _'We consider a discrete-time model fore downlink of a
we answer these questions positively. Specifically, we logve single-cellmulti-channel wireless network with orthogonal

low-complexitygreedy policies that achieve bothroughput channels andh users. In each time-slot, a channel can b_e
optimality and rate-function near-optimality allocated only to one user, but a user can be allocated with

We summarize our main contributions as follows. multiple channels simultaneousls in [2]-{5], [7], for ease
First, we propose a greedy scheduling policy, caleday- of presentation, we assume that the number of users is equal

based Queue-Side-Greedy (D-QSGhich has dower com- © the nu_m_ber of_ channels. Our rate-function dglay analysis
plexity O(n®) compared t00(n°) of DWM. D-QSG, in an follows similarly if the number of users scales linearly twit
iterative manner, schedules the oldest packets remainitigei € number of channeldVe let ¢); denote the FIFO queue
system one-by-one whenever possible. We rigorously progesociated with theth user, and les; denote thej-th servet.
that D-QSG not only achieves throughput optimality, bubala/Ve consider the foII_owmg.Ld. ON-OFF channel model that
guarantees a near-optimal rate-function. Specifically,rdte- as also been used in the previous works (e.g., [1}-[5], [i])

function attained by D-QSG for any fixed integer thresholgUch @ model, the connectivity between each queue and each
b > 0, is not only positive but also no smaller than the©Ver change between ON and OFF from time to time. We

maximum achievable rate-function by any scheduling poli@Sume that the perfect channel state information (i.eefive

for thresholdb— 1. We obtain this result by comparing D-QscEach channel is ON or OFF for each user in each time-slot)

with a newGreedy Frame-Based Scheduling (G-FB®)icy is known at the BS. This is a reasonable assumption in the

that can exploit a key property of D-QSG. We show that ownlink scenario of a single cell in a multi-channel cedlul
FBS policy guarantees a near-optimal rate-function, aad tSystem with dedicated feedback channels. We also assute uni

D-QSG dominates G-FBS in every sample-path. channel capacity, i.e., at mqst_ one packet frgm can be
Second, we propose another greedy scheduling polié\%rved bys; when the connectivity betweep; andsS; is ON.

called Delay-based Server-Side-Greedy (D-SS@hich has is assumption of unit channel capacity is made for ease of

an evenlower complexityO(n?). D-SSG, also in an iterative exposition, and our analysis can be readily extended to a O-

manner, allocates servers one-by-one to serve a connediegnannel model (where the channel capacityiispackets

queue that has the largeSt head-of-line (HOL) delay' NOtelThroughout this paper, we use the terms “user” and “queuetdéhange-
that the queue-length-based counterpart of D-SSG, called 4Bly, and use the terms “channel” and “server” interchablyea



beginning of time-slot. Finally, we defindz)* = max(x, 0),
and useily., to denote the indicator function.

We now state the assumptions on the arrival processes. The
throughput analysis is carried out under the following mild
assumption, which has also been used in [10].

Assumption 1:For each usef € {1,2,...,n}, the arrival

, . , processA;(t) is an irreducible and positive recurrent Markov
Fig. 1. System model. The connectivity between each paiuetig@; and . . . L
server; is "ON” (denoted by a solid line) with probability, and “OFF” chain with countable state space, and satisfies the Strong La

(denoted by a dashed line) otherwise. of Large Numbers: That is, with probability one,
t—1
Ai
| | tim 2r=0 A0 _ ®
per time-slot when a channel is ON)et C; ;(¢) denote the =00 t

connectivity between queu@; and serverS; in time-slotz. We also assume that the arrival processes are mutually in-
Then,C; ;(t) can be modeled as a Bernoulli random variabléependent across users (which can be relaxed for throughput
with a parameter € (0,1), i.e., analysis as discussed in [10].)

The following two assumptions are also used in the previous
work [7] on the rate-function delay analysis.

Assumption 2:There exists a finitd, such thatA;(¢t) < L
We assume that all the random variabl€s;(¢) arei.i.d. for anyi andt, i.e., instantaneous arrivals are bounded.
across all the variableg j and t. Such a network can be Assumption 3:The arrival processes ar&d. across users,
modeled as a multi-queue multi-server system with stoachasand \; = p for any useri. Given anye > 0 ando > 0,
connectivity, as shown in Fig. 1. there existsT’ > 0, N > 0, and a positive functiodg (e, J)

As in the previous works [1]-[3], [7], the abové&.d. ON- independent of. andt¢ such that
OFF channel model is a simplification, and is assumed only __,
for the analytical results. The ON-OFF model is a gooqp(zleﬂ{\Z?:lAi(T)*P”bf"} > 6) < exp(—ntIg(e, ),
approximation when the BS transmits at a fixed achievabée rat t
if the SINR level is above a certain threshold at the receivéor all t > T andn > N.
and does not transmit otherwise. The sub-bands beirmjg Assumption 2 requires that the arrivals in each time-slot
is a reasonable assumption when the channel width is largpave bounded support, which is indeed true for real systems.
than the coherence bandwidth of the environment. Moreovassumption 3 is also very general, and can be viewed as a
we believe that our results obtained for this simple channelsult of the statistical multiplexing effect of a large nen
model can provide useful insights for more general modetsf sources. Assumption 3 holds for.d. arrivals and arrivals
Indeed, we will show through simulations that our proposedtiven by two-state Markov chains (that can be correlateat ov
greedy policies also perform well in more general model§me) as two special cases.
e.g., accounting for heterogeneous (near- and far-)usets a o
time-correlated channels. Further, we will briefly dischesy A+ Performance Objectives
to design efficient scheduling policies in general scemario In this paper, we consider two performance metrics: 1) the
towards the end of this paper. throughputand 2) therate-functionof the probability that

We present more notations used in this paper as follovike largest packet delay in the system exceeds a certain fixed
Let A,(t) denote the number of packet arrivals to qu&de threshold in the many-channel many-user asymptotic regime
in time-slot¢. Let A(t) = >_"" , A;(t) denote the cumulative ~We first define theoptimal throughput regior{or stability
arrivals to the entire system in time-slgtand letA(¢1,t2) = region) of the system for any fixed integer > 0 under
th:tl A(r) denote the cumulative arrivals to the system frorAssumption 1. As in [10], a stochastic queueing network
time ¢1 to to. We let \; denote the mean arrival rate to queués said to bestable if it can be described as a discrete-
Q;, and let\ = [\1, \o, ..., \,] denote the arrival rate vector.time countable Markov chain and the Markov chain is stable
We assume that packets arrive at the beginning of a time-slot the following sense: The set of positive recurrent states
and depart at the end of a time-slot. We Gx¢t) to denote the is nonempty, and it contains a finite subset such that with
length of queu&); at the beginning of time-sldtimmediately probability one, this subset is reached within finite timenfir
after packet arrivals. Queues are assumed to have an infigite initial state. When all the states communicate, stghigi
buffer capacity. LetZ; ;(¢) denote the delay of theth packet equivalent to the Markov chain being positive recurrent[11
at queud?); at the beginning of time-slat which is measured The throughput regionof a scheduling policy is defined as
since the time when the packet arrived to quéyeuntil the the set of arrival rate vectors for which the network remains
beginning of time-slot. Note that at the end of each time-stable under this policy. Then, tleptimal throughput regioiis
slot, the packets that are still present in the system wilkehadefined as the union of the throughput regions of all possible
their delays increased by one due to the elapsed time. Furtlseheduling policies, which is denoted ky. A scheduling
let W;(t) = Z, 1(t) denote the HOL delay of queu@; at the policy is throughput-optimal if it can stabilize any arrival

Cii(t) = 1, with probability g,
IV 0, with probability 1 — q.




rate vector strictly insideA\*. For more discussions on the In [7], the authors proposed thigelay Weighted Matching
optimal throughput regiom\* in our multi-channel systems, (DWM) policy that is rate-function delay-optimal and achieves
please refer to our online technical report [9]. upper-boundly; (b) in many cases. However, it suffers from
Next, we consider the probability that the largest packathigh complexityO(n®). Specifically, DWM requires com-
delay in the system exceeds a certain fixed threshold, gmating a maximum-weight matching over a bipartite graph
its rate-functionin the many-channel many-user asymptoti&[V, E] with |V| = O(n?) and |E| = O(n?), which has a
regime. LetlW () £ max; <;<, W;(t) denote the largest HOL complexityO(|V || E|+ |V |*log |V|) = O(n®) in general [12].
delay over all the queues (i.e., the largest packet delakéen t
system) at the beginning of time-slot Assuming that the
system is stationary and ergodic, we define rate-function In this section, we develop a simple greedy scheduling
as the asymptotic decay-rate of the probability that thgdstr policy called Delay-based Queue-Side-Greedy (D-QSB)
packet delay exceeds any fixed integer threshotdo, as the QSG, in an iterative manner, schedules the oldest packets in

IV. DELAY-BASED QUEUE-SIDE-GREEDY (D-QSG)

system sizen goes to infinity, i.e., the system one-by-one whenever possible. In this sense, D-
a1 QSG can be viewed as an approximatiorFoft-Come First-
I(b) = lim —log P(W(0) > b). (2) serve (FCFS)policy, which has been known to be delay-

?Ptimal in many systems (e.g., a single-server queue) [7].
We will show that D-QSG not only achieves throughput
optimality, but also guarantees a near-optimal rate-fongct

at a complexityO(n?).

Note that once we know this rate-function, we can th
estimate the delay-violation probability usifgi? (0) > b) ~
exp(—nlI(b)). The estimate tends to be more accuratenas
becomes larger. Clearly, for systems with a largea larger
value of the rate-function implies a better delay perforogan A, Algorithm Description
i.e., a smaller probability that the largest packet delayhe
system exceeds a certain threshold. We define abigmal
rate-functionas the maximum achievable rate-function ovq?
all possible scheduling policies, which is denotedibyb). A
scheduling policy igate-function delay-optimaf it achieves
the optimal rate-functiod* (b) for any fixed integer threshold
b>0.

We start by presenting some additional notations. In the D-
SG policy, there are at most rounds in each time-slat
et Qr(t), ZF,(t) and W[ (t) = ZF,(t) denote the length of
queueQ;, the delay of the-th packet of@;, and the HOL
delay of Q; after thek-th round in time-slott, respectively.
In particular, we haveQ?(t) = Q;(t), Z2,(t) = Z;,(t), and
WO(t) = Wi(t). Let T4(t) denote the set of indices of the
I11. AN UPPERBOUND ON THE RATE-FUNCTION available servers at the beginning of theh round, and let
In this section, we derive an upper bound on the ratdx(t) denote the set of queues that have the largest HOL
function that can be achieved by any scheduling algorithm d€lay among all the queues that are connected to at least
Let I4¢(t, =) denote the asymptotic decay-rate of the prot€ Server inl'x(¢) at the beginning of thé-th round, i.e.,
ability that in any interval of time-slots, the total number of Ur(t) = {1 < i< n | WiTH(O) - Ly, () Cos0>00 =
packet arrivals is greater thar(t + z), asn tends to infinity, maxi<i<n, W/ () - LS v, ) Cry (>0} ) AlSO, leti(k, t)

ie., be the index of the queue that is served in fhéh round
R 1 of time-slot¢, and letj(k,¢) be the index of the server that
Lag(t, ) = lim inf . log P(A(—t +1,0) > n(t + x)). servesR; ;) in that round. We then specify the operations of

- . D-QSG as follows.
Let T4 (x) be the infimum ofl 4 (¢, ) over allt > 0, i.e., Delay-based Queue-Side-Greedy (D-QSG) policyn each

Iac(x) £ inf Thg(t, x). time-slott,
=0 1) Initialize k = 1 and Yy = {1,2,...,n}.
Also, we definely £ log l%q 2) Inthek-th round, allocate servet; . ;) to Q;(..), Where

Theorem 1:Given the system model described in Sec- ) o
tion II, for any scheduling algorithm, we have i(k,t) = min{i [ 7 € Uy(1)},
. 1 J(k,t) =min{j € Tp(t) | Cir,p),;(t) =1}
h,ILrLS;ipTlogﬂD(W(o) > b) That is, in the k-th round, we consider the queues
< min{(b+ 1)Ix, min {Iag(b—c) + cIx}} £ Iy (b). that have the largest HOL delay among those that
O<esb have at least one available server connected (i.e., the
Theorem 1 can be shown by considering two events thatlead queues in setl,(t)), and break ties by picking the
to {W(0) > b}, and computing their probabilities and decay-  queue with the smallest index (i.e;(,)). We then

rates. We provide the proof in our online technical repoft [9 choose an available server that are connected to queue
Remark:Theorem 1 implies thafy (b) is an upper bound Qi(k,1)» and break ties by picking the server with the

on the rate-function that can be achieved by any scheduling smallest index (i.e., servef ), to serve Q;y,q)-

policy. Hence, even for the optimal rate-functidh(b), we At the end of thek-th round, update the length of

must havel*(b) < Iy (b) for any fixed integer thresholgd> 0. Qi,r) to account for service, i.e., se:[)f(kyt)(t) =



(k) . .
forall i # i(k,t). Also, update the HOL delay @, ), pa\(/:\yets, '”_‘;'Ud'r?g the ?Id]?{t(n) pacre_ts. i il
by setting W5, (t) = ZE,, () = Z5:4 (1) i e provide the proof of Lemma 1 in our online technica

report [9], and explain the importance of Lemma 1 as follows.
We first recall how DWM is shown to be rate-function delay-

) i X optimal in [7]. Specifically, the authors of [7] compare DWM
3) Stop if k equalsn. Otherwise, increas& by 1, set it another policy FBS. In FBS, packets are filled into
Ti(t) = Te-1(t)\{j(k, 1)}, and repeat step 2. frames with sizen — H in a FCFS manner, wher#l is a
Remark:D-QSG has a complexity)(n®), since there are gyitably chosen constant independentofThe FBS policy
at mostn rounds, and in each round, it tak€¥n® +n) = attempts to serve the entire HOL frame whenever possible.

O(n?) time to find a queue that has at least one connectgfle authors of [7] first establish the rate-function optityal
and available server (which takéxn?) time to check for all of the FBS policy. Then, by showing that DWM dominates
queues) and that has the largest HOL delay (which takes FBS (j.e., DWM will serve the same packets in the entire HOL
time to compare). It should be noted that in each round, whgame whenever possible), the delay optimality of DWM then
there are multiple queues that have the largest HOL delay, f3tiows.
QSG chooses the queue with the smallest index; when thergjowever, this comparison approach will not work directly
are mu|tlp|e a.VaiIabIe servers that are Connected to thSthOfor D_QSG In order to serve all packets in a frame whenever
queue, D-QSG allocates the server with the smallest indgssible, one would need certain back-tracking (or renraggh
We specify such a tie-breaking rule for ease of analysis. Hberations as in a typical maximum-weight matching algo-
practice, we can also break ties arbitrarily. rithm like DWM. For a simple greedy algorithm like D-QSG
B. Near-optimal Delay Performance that do_e_s not do ba_lck-tracking_, it is unlikely to attain tbe_m
robability of serving the entire frame. In fact, even if we
Bduce the maximum frame size to— 2y/n, we are still

able to show that D-QSG can serve the entire frame with a

fficiently high probability. Thus, we cannot compare D&S
with FBS as in [7].

Fortunately, Lemma 1 provides an alternate avenue. Specif-
ically, for a frame of sizen, even though D-QSG may not
serve anygivensubset ofn — 2,/n packets with a sufficiently

I(b) = liminf -1 log P (W(0) > b) > I*(b—1).  (3) high proba_bi_lity, it w_iII servesomf_esubset ofn—2_\/ﬁ packets

n—oo 1 with a sufficiently high probability. Further, this subsetish

We next present our main result in the following theorentontain the oldes2,/n packets for a large, if we choose
which states that D-QSG achieves a near-optimal ratedfumct f(n) in Lemma 1 such thaf(n) € w(y/n). Note that D-QSG

Theorem 2:Under Assumptions 2 and 3, D-QSG achievestill leaves (at mostR,/n packets to the next time-slot. In
a near-optimal rate-function, as given in (3). the next time-slot, if we can make sure that D-QSG serves

We prove Theorem 2 by the following strategy: 1) motivatedll of these2,/n leftover packets, which also happen to be
by a key property of D-QSG (Lemma 1), we propose thihe oldest, we would then at worst suffer an additional one-
Greedy Frame-Based Scheduling (G-FB®)icy, which is a time-slot delay. Intuitively, we would then be able to shhatt
variant of the FBS policy in [7] that has been shown to be ratB-QSG attains a near-optimal delay rate-function.
function delay-optimal in many cases; 2) show that G-FBS To make this argument rigorous, we next compare D-QSG
achieves a near-optimal rate-function (Theorem 3); 3) @rowith a new policy calledGreedy Frame-Based Scheduling
a dominance property of D-QSG over G-FBS. Specifically, ifG-FBS). Note that G-FBS is only for assisting our analysis,
Lemma 2, we show that for any given sample path, by the eadd will not be used as an actual scheduling algorithm. In the
of each time-slot, D-QSG has served every packet that G-FBSFBS policy, packets are grouped into frames. Each frame
has servedNote that Theorem 2 holds for D-QSG with anjas a capacity ofip = n — 2/n packets, i.e., at mostg
tie-breaking rules, under which, when allocating a server tpackets can be filled into a frame. As packets arrive to the
a queue, it does not account for the connectivity between tisiystem in each time-slot, the frames are created by fillieg th
server and the other queuekhe performance of D-QSG maypackets sequentially. Specifically, packets that arrivhezare
be further improved, if a better tie-breaking rule is apglie filled into the frame with a higher priority, and packets from

We now present a crucial property of D-QSG in Lemma Bueues with a smaller index are filled with a higher priority
which is the key to proving the rate-function near-optirtyali when multiple packets arrive in the same time-slot. Once the
for G-FBS and D-QSG. current frame is fully filled, it will be closed and a new frame

Lemma 1:Consider any: packets and any strictly increas-will be open. We also assume that there is a “leftover” frame,
ing function f(n) < %. Suppose that D-QSG is applied tacalledL-framefor simplicity, with a capacity oR,/n packets.
schedule these packets. Then, there exists a finite integefhe L-frame is for storing the packets that are not served in
Nx > 0 such that for allh > Ny, with probability no smaller the previous time-slot and are carried over to the curreme-i

B (1) = Cigeny it (t))+ and Qk(t) = QF'(¢) thanl—2(1— q)"~2/(") D-QSG schedules at least— 2\/n

Qi (t) > 0,andWi, | (t) = 0 otherwise, and setting
Wk(t) = WFt(¢t) for all i # i(k,t).

In this section, we present the main result of this paper
near-optimal rate-function. We first define near-optimaé+a
function, and then evaluate the delay performance of D-QS

A policy P is said to achievenear-optimal rate-function
if the delay rate-functior/ (b) attained by policyP for any
fixed integer threshold > 0, is no smaller thad*(b—1), the
optimal rate-function for thresholtl— 1. That is,



slot. At the beginning of each time-slot, we combine the HOtime, and that under G-FBS, a success does not occur in any
frame and the L-frame into a “super” frame, cal@dramefor  of the followingb+ 1 time-slots (including the time-slot when
simplicity, with a capacity of. packets. If there are less tharthe packet arrives), then it also leads to a delay violatiath

n packets in the S-frame, we can artificially add some dumnay these two possibilities has a corresponding rate-fondior
packets with a delay of zero at the end of the S-frame so tlitst probability of occurring. Large-deviations theory heells
the S-frame is fully filled. In each time-slot, G-FBS runs thes that the rate-function for delay violation is determirimsd
D-QSG policy, but restricted to only the packets of the S- the smallest rate-function among these possibilities, (irare
frame. We call it asuccessif D-QSG can schedule at leas§ events occur in the most likely way”.) We can then show that
packets, including the oldegtn) packets, from the S-frame, I(b) > I;(b — 1) > I*(b — 1) for any integerb > 0, where
wheref(n) < % is any function that satisfies th#itn) € o(n) I(-) is the rate-function attained by G-FB5;(-) is the upper
and f(n) € w(y/n). In each time-slot, if a success does ndbound that we derived in Section IIl, add(-) is the optimal
occur, then no packets will be served. When there is a succasse-function, respectively. We provide the detailed prob
the G-FBS policy serves all the packets that are scheduledyeorem 3 in our online technical report [9].

D-QSG restricted to the S-frame in that time-slbemma 1 ~ Remark:Note that the gap between the optimal rate-function
implies that in each time-slot, a success occurs with prdityab and the above near-optimal rate-function is likely to betejui
atleastl —2(1—¢)"~2/("). When there is a success, all packetsmall. For example, in the special caseiafl. 0-1 arrivals,
from the S-frame, except for at mod{/n = n — ny packets, the near-optimal rate-function implies thab) > b%]y(b) >

are successfully served, and these served packets inchadebl%j*(b), since we can compute thét (b) = (b+1) log 1%
oldest f(n) packets. The packets that are not served will ey this special case. !
stored in the L-frame, and carried over to the next time-slot Finally, we make use of the following dominance property
(except for the dummy packets, which will be discarded.) of D-QSG over G-FBS.

Remark:Although G-FBS is similar to FBS policy [7], it | emma 2:For any given sample path, by the end of any
exhibits a key difference from FBS. In the FBS policy, in eacfime-siot, D-QSG has served every packet that G-FBS has
time-slot, either an entire frame (i.e., all the packetshia t goryed.
frame) will be completely served or none of its packets will y, prove Lemma 2 by induction, and provide the proof in

be served. Hence, it does not allow packets to be carried O¥gk oniine technical report [9]. Then, the near-optimakrat

to th_e next frame. In (_:ontr_ast, G-_FBS allows Ief_tover pa&keﬁmction of D-QSG (Theorem 2) follows immediately from
and is thus more flexible in serving frames. This property |{Ssynma 2 and Theorem 3.

the key reason that we can use a lower-complexity police (lik
D-QSG). On the other hand, it leads to a small gap between @e
rate-functions achieved by G-FBS and delay-optimal petici
(e.g., FBS and DWM). Nonetheless, this gap can be wellln this section, we establish throughput optimality of D-
characterized by using Lemma 1. Specifically, in the G-FB@SG. Note that the rate-function is studied in the asymptoti
policy, an L-frame contains at mo8t/n packets, because atregime, i.e., whem goes to infinity. Hence, even if the
most2./n packets are not served whenever there is a succesgvergence rate of the rate-function is fast (as is tyfyical
Further, these (at most)\/n leftover packets will be among the case), the throughput performance may be poor for small
the oldestf(n) packets (in the S-frame) in the next time-sloto moderate values of. As a matter of fact for a fixed, a
whenn is large, due to our choice of(n) € w(,/n). Hence, rate-function delay-optimal policy (e.g., FBS) may not eve
another success will serve all the leftover packets. Thjdiga be throughput-optimal. To this end, we are also interested i
that at mostz 4+ 1 successes are needed to completely sertfe throughput performance of scheduling policies in gainer
= frames, for any finite integer > 0. In fact, this property non-asymptotic regimes (i.e., in a multi-channel systerti wi

is the key reason for a one-time-slot shift in the guarante@ay fixed value ofa.)

rate-function by G-FBS, which leads to the near-optimahglel  Itis well-known that the MaxWeight Scheduling policy [10],

Throughput Optimality

performanceas we show in the following theorem. [13]-[15] that maximizes the weighted sum of the rates (wher
Theorem 3:Under Assumptions 2 and 3, G-FBS policythe weight is either queue length or delay) is throughput-
achieves a near-optimal rate-function, as given in (3). optimal in very general settings, including the multi-chah

The proof of Theorem 3 follows a similar line of argumensystem that we consider in this paper. Hence, we first distuss
as in the proof for rate-function delay optimality of FBS €Fh simple extension of the Delay-based MaxWeight Scheduling
orem 2 in [7]). We consider all the events that lead to theydela(D-MWS) policy [8], [10], [14], [15] for our multi-channel
violation event{W (0) > b}, which can be caused by twosystem.
factors: bursty arrivals and sluggish service. On the omelha Let S;(¢) denote the set of queues that are connected to
if there are a large number of arrivals in certain period, sy serversS; in time-slott¢, i.e.,S;(t) = {1 <i <n | C;;(t) =
length ¢ time-slots, which exceeds the maximum number df}, and letI';(t) denote the subset of queuesdj(¢) that
packets that can be served in a period afb + 1 time-slots, have the largest HOL delay in time-slati.e., I';(t) £ {i €
then it unavoidably leads to a delay violation. On the othe;(t) | Wi(t) = maxes, ) Wi(t)}. We then specify the
hand, suppose that there is at least one packet arrivaltatrceroperations of D-MWS as follows.



Delay-based MaxWeight Scheduling (D-MWS)policy: In  with i.i.d. 0-1 arrivals). We omit the proof here, and explain
each time-slot, the scheduler assigns senfgrto serve queue the intuition behind it as follows. Under D-MWS, each server
Qi+ such thati(j,¢) = min{i | ¢ € T';(¢)}. That is, each chooses to serve a connected queue that has the largest HOL
server is selected to serve a connected queue that hasdblay without accounting for the decisions of the other serv
largest HOL delay, breaking ties by picking the queue witlhis way of allocating servers leads to an unbalanced sdbedu
the smallest index when there are multiple such queues. That is, only a small fraction of the queues get served in
Remarks:We can prove throughput-optimality of D-MWSeach time-slot. This inefficiency essentially leads to melay
in our multi-channel system, using fluid limit techniques bperformance.
following the same line of analysis used in [10] for a single- Now, we describe the operations of our proposed D-SSG
channel system. The key insight we obtain from the proof ipolicy. D-SSG is similar to D-MWS, in the sense that it also
[10] is that to achieve throughput optimality, it is sufficte allocates each server to serve a connected queue that has
for each server to serve a connected queue that has thetlarges largest HOL delay. However, there is a key difference.
weight in the fluid limits rather than in the original system. That is, instead of allocating the servers all at once as in D-
Using the insight obtained above, we next show that D-QS®WS, D-SSG allocates the servers one-by-one, accounting
is throughput-optimal in general non-asymptotic settiffgs for the scheduling decisions of the servers that are akakcat

a system with any fixea). earlier. We will show thathis critical difference results in a
Theorem 4:D-QSG policy is throughput-optimal under As-substantial improvement in the delay performance.
sumption 1. We present some additional notations, and then specify the

We prove Theorem 4 using the fluid limit techniques [10[etailed operations of D-SSG. In each time-slot, thererare
[16]. Different from D-MWS policy under which, each serverounds, and in each round, one of the remaining servers is
chooses to serve a connected queue with the largest HRlocated. LetQ¥(t), ZF,(t) and W[ (t) = ZF,(t) denote the
delay, D-QSG allocates servers to serve the oldest packgtts fength of queud);, the delay of thé-th packet ofQ;, and the
one-by-one in an iterative manner. Hence, we can show thOL delay of ; after k& > 1 rounds of server allocation in
the operations of D-QSG guarantees that each server choagae-slott, respectively. In particular, we hadg! (t) = Q;(t),

a connected queue that has a large enough weight, and thagin(t) = Z, ,(t), and W(t) = W;(t). Recall thatS;(t) =
the fluid limits the weight of the queue chosen by each server < < | C; () = 1}. Let I'%(t) denote the set of indices
is equal to that of the queue chosen under D-MWS. Then, We the queues that are connected to serSgiin time-slot ¢
complete the proof of Theorem 4, following a similar line ohnd have the largest HOL delay at the beginning of k@
analysis as in [10]. We provide the detailed proof in ourmali round in time-slott, i.e., Ff(t) 2 LeSit) | Wit =
technical report [9]. maxes, ) W' (t)}. Leti(j,¢) denote the index of queue
So far, we have shown that D-QSG not only achievefat is served by serve; in time-slot¢ under D-SSG.

a near-optimal rate-function, but also guarantees thrpugh Delay-based Server-Side-Greedy (D-SSG) policyin each
optimality, with a lower complexity)(n?) than that of DWM. {imesiott

Interestingly, we will show next that just by switching the o
der of examining the servers or the queues first, we can obtai
another policy that not only achieves the same performahce o
throughput optimality and rate-function near-optimaditythat

of D-QSG, but also incurs an even lower complexityn?).

) Initialize & = 1.

) In the k-th round, allocate servef, to serve queue
Qi(k,t)» Wherei(k,t) = min{i | i € I}(t)}. That is,
in the k-th round, serverS;, is allocated to serve the
connected queue that has the largest HOL delay, break-

V. DELAY-BASED SERVER-SIDE-GREEDY (D-SSG) ing ties by picking the queue with the smallest index if

In this section, we develop another greedy scheduling ypolic there are multiple such queues. Then, upgate the length
calledDelay-based Server-Side-Greedy (D-S3@)der which of Qir,) to account for service, i.e., sekj, ,(t) =
each server iteratively chooses to serve a connected gnatue t Qf@lt) (t) — Ci(k,t),k(t))+ and Q¥ (t) = fol(t) for
has the largest HOL dgla_y. We sh_ow that D_—SSG is equivalent 4, 7& i(k, ). Also, update the HOL delay @ ;) to
to D-QSG under certain tie-breaking rules, in the sampté-pa g
sense, and thus achieves the same performanteamfghput
optimality and rate-function near-optimaligs that of D-QSG.

a(;colunt for service, i.e., s&t, . (t) = ZJi; ), (t) =
Zita) 2(t) 1f Qf(k,o(t) > 0, and Wi’fk.,z)(t) =0

Further,D-SSG has an even lower complexityn?). otherwise, and sal’*(t) = W'~ (t) for all i # i(k, ).
Before we describe the detailed operations of D-SSG, we3) Stop ifk equalsn. Otherwise, increaseby 1 and repeat
would like remark on D-MWS due to the similarity be- step 2.

tween D-MWS and D-SSG. Note that D-MWS is not only Remark:Note that both D-SSG and D-QSG aim to allocate
throughput-optimal, but also has a low complexit(n?). each server to a queue with the largest HOL delay. The
However, we can show that D-MWS suffers from poor delakey difference between D-SSG and D-QSG is that D-SSG
performance. Specifically, following a similar line of argant iterates over the servers first while D-QSG iterates over the
as in the proof of Theorem 3 in [3], we can show that Dpackets/queues first. This key difference leads to the fact
MWS vyields a zero rate-function in certain scenarios (e.dhat D-SSG is simpler to implement and has an elmwer



complexityO(n?). Specifically, there are rounds, and in each D-MWS, and Q-SSG. We simulate these policies in Java
round, it takes at most times for a server to find a connectechnd compare the empirical probabilities that the largest HO
gueue with the largest HOL delay. delay in the system in any given time-slot exceeds an integer

It should be noted that the queue-length-based countergaresholdb, i.e., P(1W(0) > b).
of D-SSG, called Q-SSG, has been studied in [3], [4]. Under For the arrival processes, we consider bursty arrivals that
Q-SSG, each server iteratively chooses to serve a conneaseldriven by a two-state Markov chain and that are correlate
gueue that has the largest length. It has been shown that®-S&er time. (We obtained similar results for.d. arrivals, and
not only achieves throughput optimality, but also guaresitedo not report them here due to space constraints.) We adopt
a positive (queue-lengthate-function. However, their resultsthe same parameter settings as in [7]. For each user, theke ar
have the following limitations: 1) a positive rate-functimay packet-arrivals when the Markov chain is in state 1, andether
not be good enough, since the gap between the guarantsedo arrivals when it is in state 2. The transition prob&pili
rate-function and the optimal is unclear; 2) good queuef the Markov chain is given by the matrjR.5,0.5;0.1,0.9],
length performance does not necessarily translate intal geend the state transitions occur at the end of each time-slot.
delay performance; 3) their analysis was only carried out fdhe arrivals for each user are correlated over time, but they
restricted arrival processes that a@ only i.i.d. across users, are independent across users. For the channel model, we first
but also in timeln contrast, in the following theorem, we showassumei.i.d. ON-OFF channels with unit capacity, and set
that D-SSG achieves a rate-function thani only positive ¢ = 0.75. We later consider more general scenarios with
but also near-optima(in the sense of (3)) for more generaheterogeneous users and bursty channels that are cadrelate
arrival processes, while guaranteeing throughput optiynal over time. We run simulations for a system wittservers and

Theorem 5:D-SSG policy is throughput-optimal under As-n users, wherexw € {10, 20, ...,100}. The simulation period
sumption 1, and achieves a near-optimal rate-functionvasngi lasts for10” time-slots for each policy and each system.
in (3) under Assumptions 2 and 3. The results are summarized in Fig. 2, where the complexity

Theorem 5 follows immediately from the following lemmaof each policy is also labeled. In order to compare the rate-
which states that D-SSG is equivalent to D-QSG under tfignction 7(b) as defined in Eq. (2), we plot the probability
tie-breaking rules specified in this paper. over the number of channels or users, ig.for a fixed value

Lemma 3:For the same sample path, i.e., same realizationk thresholdb. The negative of the slopes of the curves can
of arrivals and channel connectivity, D-QSG and D-SSG pidée viewed as the rate-function for each policy. In Fig. 2, we
the same schedule in every time-slot. report the results only fob = 4, and the results are similar

We prove Lemma 3 by induction, and provide the prodbr other values of thresholdl From Fig. 2, we observe that
in our online technical report [9]. Note that under D-SS&oth D-QSG and D-SSG are virtually indistinguishable from
in each round, when a server has multiple connected quel®¥M, which is known to be rate-function delay-optimal. This
that have the largest HOL delay, we break ties by picking th®t only supports our theoretical results that both D-QSG
queue with the smallest index. Presumably, one can take oteed D-SSG guarantee a near-optimal rate-function, but also
arbitrary tie-breaking rules. However, it turns out thakedtly implies that both D-QSG and D-SSG empirically perform very
analyzing the rate-function for a greedy policy from theveer well while enjoying a lower complexity. Further, we observe
side (like D-SSG) is much more difficult than that for a greedhat D-SSG consistently outperforms its queue-lengttedas
policy from the queue side (like D-QSG). For example, aunterpart, Q-SSG, despite that in [3], it has been shown
we mentioned earlier, the authors of [3], [4] were only abldirough simulations that Q-SS@&mpirically achieves near-
to prove a positive (queue-length) rate-function for Q-SS@ptimal queue-length performance. This provides a further
in more restricted scenarios. Hence, our choice of the abmdence that good queue-length performance does not-neces
simple tie-breaking rule is in fact quite important to leagli sarily translate into good delay performance. The residts a
to the equivalence property in Lemma 3, which plays a kehow that D-MWS vyields a zero rate-function, as expected.
role in proving the rate-function near-optimality for D-SS  Further, we evaluate scheduling performance of different
Nevertheless, we would expect that one can choose arbitrppficies in more realistic scenarios, where users fatero-
tie-breaking rules in practice. geneousand channels areorrelated over time Specifically,

So far, we have shown that our proposed low-complexitye consider channels that can be modeled as a two-state
greedy policies achieve both throughput optimality an@-+atMarkov chain, where the channel is “ON” when the Markov
function near-optimality. In the next section, we will showchain is in state 1, and is “OFF” when it is in state 2. This
through simulations that these greedy poliaies only exhibit type of channel model can be viewed as a special case of
a near-optimal rate-function, but also empirically aretuially the Gilbert Elliot model that is widely used for describing
indistinguishable from the delay-optimal policy DWM in nganbursty channels. We assume that there are two classes of
scenarios. users: users with an odd index are caltezr-usersand users
with an even index are callefar-users Different classes of
users see different channel conditions: near-users séer bet

In this section, we conduct simulations to compare schedghannel condition, and far-users see worse channel conditi
ing performance of our proposed greedy policies with DWMMe assume that the transition probability matrices of clbénn

VI. SIMULATION RESULTS



1§ Markoy chain driven arrivals, b=4 high complexity) that can guarantee optimal or near-optima

F 4444 d ; ANt : _
~ delay performance in more realistic scenarios. Therefois,
ol important to investigate the scheduling problem in suchtimul
= channel systems with more general models, e.g., accounting
815 for multi-rate channels that are correlated over time,eiadt
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o s o channels with different statistics.
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