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Abstract—In this paper, we focus on the scheduling problem
in multi-channel wireless networks, e.g., the downlink of asingle
cell in fourth generation (4G) OFDM-based cellular networks.
Our goal is to design efficient scheduling policies that can achieve
provably good performance in terms of both throughput and delay,
at a low complexity. While a recently developed scheduling policy,
called Delay Weighted Matching (DWM), has been shown to be
both rate-function delay-optimal (in the many-channel many-
user asymptotic regime) and throughput-optimal (in general
non-asymptotic setting), it has a high complexity O(n5), which
makes it impractical for modern OFDM systems. To address
this issue, we first develop a simple greedy policy calledDelay-
based Queue-Side-Greedy (D-QSG) with a lower complexity O(n3),
and rigorously prove that D-QSG not only achievesthroughput
optimality, but also guaranteesnear-optimal rate-function-based
delay performance. Specifically, the rate-function attained by D-
QSG for any fixed integer threshold b > 0, is no smaller than
the maximum achievable rate-function by any scheduling policy
for threshold b − 1. Further, we develop another simple greedy
policy called Delay-based Server-Side-Greedy (D-SSG) with an
even lower complexity O(n2), and show that D-SSG achieves
the same performance as D-QSG. Thus, we are able to achieve
a dramatic reduction in complexity (from O(n5) of DWM to
O(n2)) with a minimal drop in the delay performance. Finally,
we conduct numerical simulations to validate our theoretical
results in various scenarios. The simulation results show that
our proposed greedy policies not only guarantee a near-optimal
rate-function, but also empirically are virtually indisti nguishable
from the delay-optimal policy DWM.

I. I NTRODUCTION

In this paper, we consider the scheduling problem in a
multi-channel wireless network, where the system has a large
bandwidth that can be divided into multiple orthogonal sub-
bands (or channels). A practically important example of such
a multi-channel network is the downlink of a single cell of a
fourth generation (4G) OFDM-based wireless cellular system
(e.g., LTE and WiMax). In such a multi-channel system, a
key challenge ishow to design efficient scheduling policies
that can simultaneously achieve high throughput and low
delay? This problem becomes extremely critical in OFDM
systems that are expected to meet the dramatically increasing
demands from multimedia applications with more stringent
Quality-of-Service (QoS) requirements (e.g., voice and video
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applications), and thus look for new ways to achieve higher
data rates, lower latencies, and a much better user experience.
Yet, an even bigger challenge ishow to design such high-
performance scheduling policies at a low complexity?For
example, in OFDM systems, theTransmission Time Interval
(TTI), within which the scheduling decisions need to be made,
is typically on the order of a few milliseconds. On the other
hand, there are hundreds of orthogonal channels that need tobe
allocated to hundreds of users. Hence, the scheduling decision
has to be made within a very short scheduling cycle.

We consider a single-cell multi-channel system consisting
of n channels and a proportionally large number of users, with
intermittent connectivity between each user and each channel.
We assume that the Base Station (BS) maintains a separate
First-in First-out (FIFO) queue associated with each user,
which buffers the packets for the user to download. The delay
performance that we focus on in this paper is the probability
that the largest packet waiting time (or delay) in the system
exceeds a certain fixed threshold. Such a probability can be
estimated by its asymptoticdecay-rate(or calledrate-function
in large-deviations theory) whenn becomes large. We refer to
this setting as themany-channel many-user asymptotic regime.

A number of recent works have considered a multi-channel
system similar to ours, but looked at delay from different
perspectives. A line of works focused on queue-length-based
metrics: average queue length [1] or queue-length rate-function
in the many-channel many-user asymptotic regime [2]–[5]. In
[1], the authors focused on minimizing cost functions over a
finite horizon, which includes minimizing the expected total
queue length as a special case. The authors showed that their
goal can be achieved in two special scenarios: 1) a simple two-
user system, and 2) systems where fractional server allocation
is allowed. In [2]–[5], delay performance is evaluated by the
queue-overflow probability, and its associated rate-function,
i.e., the asymptotic decay-rate of the probability that thelargest
queue length in the system exceeds a fixed threshold. Although
[2] and [5] proposed scheduling policies that can guarantee
both throughput optimality and rate-function optimality,they
suffer from the following shortcomings. First, although the
decay-rate of the queue-overflow probability may be mapped
to that of the delay-violation probability when the arrival
process is deterministic with a constant rate [6], this is not
true in general, especially when the arrivals are correlated over
time. Further, [7] and [8] have shown through simulations that
good queue-length performance does not necessarily imply
good delay performance. Second, their results on rate-function



optimality strongly rely on the assumptions that the arrival
process isi.i.d. not only across users, but also in time, and
that per-user arrival at any time is no greater than the largest
channel rate. Third, even under this more restricted model,
their proposed algorithms with rate-function optimality are
of complexity at leastO(n3). For more general models, no
algorithms with provable rate-function optimality are provided.

Similar to this paper, another line of work [7] directly
focused on the delay performance rather than the queue-length
performance. The performance of delay is often harder to
characterize, because the delay in a queueing system often
does not admit a Markovian representation, even for simple
M/M/1 queues. The problem becomes even harder in a multi-
user system with fading channels and interference constraints,
since the service rate for individual queues becomes more un-
predictable. In [7], the authors developed a scheduling policy
called Delay Weighted Matching (DWM), which maximizes
the sum of the delay of the packets scheduled in each time-
slot. It has been shown that DWM is not only throughput-
optimal, but also rate-function delay-optimal in many cases
(i.e., maximizingdelay rate-function, rather thanqueue-length
rate-functionas considered in [2]–[5].) However, DWM incurs
a high complexityO(n5), which renders it impractical for
modern OFDM systems with many channels and users (e.g.,
on the order of hundreds). Hence, scheduling policies with a
lower complexity are preferred in such multi-channel systems.

This leads to the following natural but important questions:
Can we find scheduling policies that have a significantly
lower complexity, with comparable or only slightly worse
performance? How much complexity can we reduce, and how
much performance do we need to sacrifice?In this paper,
we answer these questions positively. Specifically, we develop
low-complexitygreedy policies that achieve boththroughput
optimality and rate-function near-optimality.

We summarize our main contributions as follows.
First, we propose a greedy scheduling policy, calledDelay-

based Queue-Side-Greedy (D-QSG), which has alower com-
plexity O(n3) compared toO(n5) of DWM. D-QSG, in an
iterative manner, schedules the oldest packets remaining in the
system one-by-one whenever possible. We rigorously prove
that D-QSG not only achieves throughput optimality, but also
guarantees a near-optimal rate-function. Specifically, the rate-
function attained by D-QSG for any fixed integer threshold
b > 0, is not only positive but also no smaller than the
maximum achievable rate-function by any scheduling policy
for thresholdb−1. We obtain this result by comparing D-QSG
with a newGreedy Frame-Based Scheduling (G-FBS)policy
that can exploit a key property of D-QSG. We show that G-
FBS policy guarantees a near-optimal rate-function, and that
D-QSG dominates G-FBS in every sample-path.

Second, we propose another greedy scheduling policy,
called Delay-based Server-Side-Greedy (D-SSG), which has
an evenlower complexityO(n2). D-SSG, also in an iterative
manner, allocates servers one-by-one to serve a connected
queue that has the largest head-of-line (HOL) delay. Note
that the queue-length-based counterpart of D-SSG, called Q-

SSG, has been studied in [3], [4]. There, however, the authors
were only able to prove a positive (queue-length) rate-function
for restricted arrival processes that arei.i.d. not only across
users, but also in time. On the contrary, we show that D-SSG
achieves the same performance as D-QSG, by proving that
D-SSG and D-QSG aresample-pathequivalent under certain
tie-breaking rules. Thus, we are able to achieve a dramatic
reduction in complexity (fromO(n5) of DWM to O(n2)) with
a minimal drop in the delay performance.

Finally, we conduct numerical simulations to validate our
theoretical results in various scenarios. Our simulation results
show that our proposed greedy policiesnot only guarantee a
near-optimal rate-function, but also empirically are virtually
indistinguishable from the delay-optimal policy DWM.Further,
the simulation results also show thatD-SSG consistently
outperforms its queue-length-based counterpart Q-SSG in all
scenarios that we consider.

The remainder of the paper is organized as follows. In
Section II, we describe the details of our system model and
performance metrics. In Section III, we derive an upper bound
on the rate-function that can be achieved by any scheduling
policy. Then, in Sections IV and V, we present our main
results on throughput optimality and near-optimal rate-function
for our proposed low-complexity greedy policies. Further,we
conduct numerical simulations in Section VI. Finally, we make
concluding remarks in Section VII.

Due to space limitations, the detailed proofs are omitted and
provided in our online technical report [9].

II. SYSTEM MODEL

We consider a discrete-time model forthe downlink of a
single-cellmulti-channel wireless network withn orthogonal
channels andn users. In each time-slot, a channel can be
allocated only to one user, but a user can be allocated with
multiple channels simultaneously.As in [2]–[5], [7], for ease
of presentation, we assume that the number of users is equal
to the number of channels. Our rate-function delay analysis
follows similarly if the number of users scales linearly with
the number of channels.We let Qi denote the FIFO queue
associated with thei-th user, and letSj denote thej-th server1.
We consider the followingi.i.d. ON-OFF channel model that
has also been used in the previous works (e.g., [1]–[5], [7]). In
such a model, the connectivity between each queue and each
server change between ON and OFF from time to time. We
assume that the perfect channel state information (i.e., whether
each channel is ON or OFF for each user in each time-slot)
is known at the BS. This is a reasonable assumption in the
downlink scenario of a single cell in a multi-channel cellular
system with dedicated feedback channels. We also assume unit
channel capacity, i.e., at most one packet fromQi can be
served bySj when the connectivity betweenQi andSj is ON.
This assumption of unit channel capacity is made for ease of
exposition, and our analysis can be readily extended to a 0-
K channel model (where the channel capacity isK packets

1Throughout this paper, we use the terms “user” and “queue” interchange-
ably, and use the terms “channel” and “server” interchangeably.
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Fig. 1. System model. The connectivity between each pair of queueQi and
serverSj is “ON” (denoted by a solid line) with probabilityq, and “OFF”
(denoted by a dashed line) otherwise.

per time-slot when a channel is ON). Let Ci,j(t) denote the
connectivity between queueQi and serverSj in time-slot t.
Then,Ci,j(t) can be modeled as a Bernoulli random variable
with a parameterq ∈ (0, 1), i.e.,

Ci,j(t) =

{

1, with probability q,
0, with probability1− q.

We assume that all the random variablesCi,j(t) are i.i.d.
across all the variablesi, j and t. Such a network can be
modeled as a multi-queue multi-server system with stochastic
connectivity, as shown in Fig. 1.

As in the previous works [1]–[3], [7], the abovei.i.d. ON-
OFF channel model is a simplification, and is assumed only
for the analytical results. The ON-OFF model is a good
approximation when the BS transmits at a fixed achievable rate
if the SINR level is above a certain threshold at the receiver,
and does not transmit otherwise. The sub-bands beingi.i.d.
is a reasonable assumption when the channel width is larger
than the coherence bandwidth of the environment. Moreover,
we believe that our results obtained for this simple channel
model can provide useful insights for more general models.
Indeed, we will show through simulations that our proposed
greedy policies also perform well in more general models,
e.g., accounting for heterogeneous (near- and far-)users and
time-correlated channels. Further, we will briefly discusshow
to design efficient scheduling policies in general scenarios
towards the end of this paper.

We present more notations used in this paper as follows.
Let Ai(t) denote the number of packet arrivals to queueQi

in time-slot t. Let A(t) =
∑n

i=1 Ai(t) denote the cumulative
arrivals to the entire system in time-slott, and letA(t1, t2) =
∑t2

τ=t1
A(τ) denote the cumulative arrivals to the system from

time t1 to t2. We letλi denote the mean arrival rate to queue
Qi, and letλ , [λ1, λ2, . . . , λn] denote the arrival rate vector.
We assume that packets arrive at the beginning of a time-slot,
and depart at the end of a time-slot. We useQi(t) to denote the
length of queueQi at the beginning of time-slott immediately
after packet arrivals. Queues are assumed to have an infinite
buffer capacity. LetZi,l(t) denote the delay of thel-th packet
at queueQi at the beginning of time-slott, which is measured
since the time when the packet arrived to queueQi until the
beginning of time-slott. Note that at the end of each time-
slot, the packets that are still present in the system will have
their delays increased by one due to the elapsed time. Further,
let Wi(t) = Zi,1(t) denote the HOL delay of queueQi at the

beginning of time-slott. Finally, we define(x)+ , max(x, 0),
and use1{·} to denote the indicator function.

We now state the assumptions on the arrival processes. The
throughput analysis is carried out under the following mild
assumption, which has also been used in [10].

Assumption 1:For each useri ∈ {1, 2, . . . , n}, the arrival
processAi(t) is an irreducible and positive recurrent Markov
chain with countable state space, and satisfies the Strong Law
of Large Numbers: That is, with probability one,

lim
t→∞

∑t−1
τ=0Ai(τ)

t
= λi. (1)

We also assume that the arrival processes are mutually in-
dependent across users (which can be relaxed for throughput
analysis as discussed in [10].)

The following two assumptions are also used in the previous
work [7] on the rate-function delay analysis.

Assumption 2:There exists a finiteL such thatAi(t) ≤ L

for any i and t, i.e., instantaneous arrivals are bounded.
Assumption 3:The arrival processes arei.i.d. across users,

and λi = p for any useri. Given anyǫ > 0 and δ > 0,
there existsT > 0, N > 0, and a positive functionIB(ǫ, δ)
independent ofn and t such thatP(∑t

τ=1 1{|∑n
i=1 Ai(τ)−pn|>ǫn}

t
> δ) < exp(−ntIB(ǫ, δ)),

for all t > T andn > N .
Assumption 2 requires that the arrivals in each time-slot

have bounded support, which is indeed true for real systems.
Assumption 3 is also very general, and can be viewed as a
result of the statistical multiplexing effect of a large number
of sources. Assumption 3 holds fori.i.d. arrivals and arrivals
driven by two-state Markov chains (that can be correlated over
time) as two special cases.

A. Performance Objectives

In this paper, we consider two performance metrics: 1) the
throughput and 2) therate-function of the probability that
the largest packet delay in the system exceeds a certain fixed
threshold in the many-channel many-user asymptotic regime.

We first define theoptimal throughput region(or stability
region) of the system for any fixed integern > 0 under
Assumption 1. As in [10], a stochastic queueing network
is said to bestable if it can be described as a discrete-
time countable Markov chain and the Markov chain is stable
in the following sense: The set of positive recurrent states
is nonempty, and it contains a finite subset such that with
probability one, this subset is reached within finite time from
any initial state. When all the states communicate, stability is
equivalent to the Markov chain being positive recurrent [11].
The throughput regionof a scheduling policy is defined as
the set of arrival rate vectors for which the network remains
stable under this policy. Then, theoptimal throughput regionis
defined as the union of the throughput regions of all possible
scheduling policies, which is denoted byΛ∗. A scheduling
policy is throughput-optimal, if it can stabilize any arrival



rate vector strictly insideΛ∗. For more discussions on the
optimal throughput regionΛ∗ in our multi-channel systems,
please refer to our online technical report [9].

Next, we consider the probability that the largest packet
delay in the system exceeds a certain fixed threshold, and
its rate-function in the many-channel many-user asymptotic
regime. LetW (t) , max1≤i≤n Wi(t) denote the largest HOL
delay over all the queues (i.e., the largest packet delay in the
system) at the beginning of time-slott. Assuming that the
system is stationary and ergodic, we define rate-functionI(b)
as the asymptotic decay-rate of the probability that the largest
packet delay exceeds any fixed integer thresholdb ≥ 0, as the
system sizen goes to infinity, i.e.,

I(b) , lim
n→∞

−1

n
logP(W (0) > b). (2)

Note that once we know this rate-function, we can then
estimate the delay-violation probability usingP(W (0) > b) ≈
exp(−nI(b)). The estimate tends to be more accurate asn

becomes larger. Clearly, for systems with a largen, a larger
value of the rate-function implies a better delay performance,
i.e., a smaller probability that the largest packet delay inthe
system exceeds a certain threshold. We define theoptimal
rate-functionas the maximum achievable rate-function over
all possible scheduling policies, which is denoted byI∗(b). A
scheduling policy israte-function delay-optimalif it achieves
the optimal rate-functionI∗(b) for any fixed integer threshold
b ≥ 0.

III. A N UPPERBOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound on the rate-
function that can be achieved by any scheduling algorithm.

Let IAG(t, x) denote the asymptotic decay-rate of the prob-
ability that in any interval oft time-slots, the total number of
packet arrivals is greater thann(t+ x), asn tends to infinity,
i.e.,

IAG(t, x) , lim inf
n→∞

−1

n
logP(A(−t+ 1, 0) > n(t+ x)).

Let IAG(x) be the infimum ofIAG(t, x) over all t > 0, i.e.,

IAG(x) , inf
t>0

IAG(t, x).

Also, we defineIX , log 1
1−q

.
Theorem 1:Given the system model described in Sec-

tion II, for any scheduling algorithm, we have

lim sup
n→∞

−1

n
logP(W (0) > b)

≤ min{(b+ 1)IX , min
0≤c≤b

{IAG(b− c) + cIX}} , IU (b).

Theorem 1 can be shown by considering two events that lead
to {W (0) > b}, and computing their probabilities and decay-
rates. We provide the proof in our online technical report [9].

Remark:Theorem 1 implies thatIU (b) is an upper bound
on the rate-function that can be achieved by any scheduling
policy. Hence, even for the optimal rate-functionI∗(b), we
must haveI∗(b) ≤ IU (b) for any fixed integer thresholdb ≥ 0.

In [7], the authors proposed theDelay Weighted Matching
(DWM) policy that is rate-function delay-optimal and achieves
upper-boundIU (b) in many cases. However, it suffers from
a high complexityO(n5). Specifically, DWM requires com-
puting a maximum-weight matching over a bipartite graph
G[V,E] with |V | = O(n2) and |E| = O(n3), which has a
complexityO(|V ||E|+ |V |2 log |V |) = O(n5) in general [12].

IV. D ELAY-BASED QUEUE-SIDE-GREEDY (D-QSG)

In this section, we develop a simple greedy scheduling
policy called Delay-based Queue-Side-Greedy (D-QSG). D-
QSG, in an iterative manner, schedules the oldest packets in
the system one-by-one whenever possible. In this sense, D-
QSG can be viewed as an approximation ofFirst-Come First-
Serve (FCFS)policy, which has been known to be delay-
optimal in many systems (e.g., a single-server queue) [7].
We will show that D-QSG not only achieves throughput
optimality, but also guarantees a near-optimal rate-function,
at a complexityO(n3).

A. Algorithm Description

We start by presenting some additional notations. In the D-
QSG policy, there are at mostn rounds in each time-slott.
Let Qk

i (t), Z
k
i,l(t) andW k

i (t) = Zk
i,1(t) denote the length of

queueQi, the delay of thel-th packet ofQi, and the HOL
delay ofQi after thek-th round in time-slott, respectively.
In particular, we haveQ0

i (t) = Qi(t), Z0
i,l(t) = Zi,l(t), and

W 0
i (t) = Wi(t). Let Υk(t) denote the set of indices of the

available servers at the beginning of thek-th round, and let
Ψk(t) denote the set of queues that have the largest HOL
delay among all the queues that are connected to at least
one server inΥk(t) at the beginning of thek-th round, i.e.,
Ψk(t) , {1 ≤ i ≤ n | W k−1

i (t) · 1{∑
j∈Υk(t) Ci,j(t)>0} =

max1≤l≤n W k−1
l (t) · 1{∑

j∈Υk(t) Cl,j(t)>0}}. Also, let i(k, t)
be the index of the queue that is served in thek-th round
of time-slot t, and letj(k, t) be the index of the server that
servesQi(k,t) in that round. We then specify the operations of
D-QSG as follows.
Delay-based Queue-Side-Greedy (D-QSG) policy:In each
time-slot t,

1) Initialize k = 1 andΥ1 = {1, 2, . . . , n}.
2) In thek-th round, allocate serverSj(k,t) toQi(k,t), where

i(k, t) = min{i | i ∈ Ψk(t)},
j(k, t) = min {j ∈ Υk(t) | Ci(k,t),j(t) = 1}.

That is, in the k-th round, we consider the queues
that have the largest HOL delay among those that
have at least one available server connected (i.e., the
queues in setΨk(t)), and break ties by picking the
queue with the smallest index (i.e.,Qi(k,t)). We then
choose an available server that are connected to queue
Qi(k,t), and break ties by picking the server with the
smallest index (i.e., serverSj(k,t)), to serveQi(k,t).
At the end of thek-th round, update the length of
Qi(k,t) to account for service, i.e., setQk

i(k,t)(t) =



(

Qk−1
i(k,t)(t)− Ci(k,t),j(k,t)(t)

)+

andQk
i (t) = Qk−1

i (t)

for all i 6= i(k, t). Also, update the HOL delay ofQi(k,t),
by setting W k

i(k,t)(t) = Zk
i(k,t),1(t) = Zk−1

i(k,t),2(t) if
Qk

i(k,t)(t) > 0, andW k
i(k,t)(t) = 0 otherwise, and setting

W k
i (t) = W k−1

i (t) for all i 6= i(k, t).
3) Stop if k equalsn. Otherwise, increasek by 1, set

Υk(t) = Υk−1(t)\{j(k, t)}, and repeat step 2.
Remark:D-QSG has a complexityO(n3), since there are

at mostn rounds, and in each round, it takesO(n2 + n) =
O(n2) time to find a queue that has at least one connected
and available server (which takesO(n2) time to check for all
queues) and that has the largest HOL delay (which takesO(n)
time to compare). It should be noted that in each round, when
there are multiple queues that have the largest HOL delay, D-
QSG chooses the queue with the smallest index; when there
are multiple available servers that are connected to the chosen
queue, D-QSG allocates the server with the smallest index.
We specify such a tie-breaking rule for ease of analysis. In
practice, we can also break ties arbitrarily.

B. Near-optimal Delay Performance

In this section, we present the main result of this paper on
near-optimal rate-function. We first define near-optimal rate-
function, and then evaluate the delay performance of D-QSG.

A policy P is said to achievenear-optimal rate-function
if the delay rate-functionI(b) attained by policyP for any
fixed integer thresholdb > 0, is no smaller thanI∗(b−1), the
optimal rate-function for thresholdb− 1. That is,

I(b) = lim inf
n→∞

−1

n
logP (W (0) > b) ≥ I∗(b − 1). (3)

We next present our main result in the following theorem,
which states that D-QSG achieves a near-optimal rate-function.

Theorem 2:Under Assumptions 2 and 3, D-QSG achieves
a near-optimal rate-function, as given in (3).

We prove Theorem 2 by the following strategy: 1) motivated
by a key property of D-QSG (Lemma 1), we propose the
Greedy Frame-Based Scheduling (G-FBS)policy, which is a
variant of the FBS policy in [7] that has been shown to be rate-
function delay-optimal in many cases; 2) show that G-FBS
achieves a near-optimal rate-function (Theorem 3); 3) prove
a dominance property of D-QSG over G-FBS. Specifically, in
Lemma 2, we show that for any given sample path, by the end
of each time-slot, D-QSG has served every packet that G-FBS
has served.Note that Theorem 2 holds for D-QSG with any
tie-breaking rules, under which, when allocating a server to
a queue, it does not account for the connectivity between this
server and the other queues.The performance of D-QSG may
be further improved, if a better tie-breaking rule is applied.

We now present a crucial property of D-QSG in Lemma 1,
which is the key to proving the rate-function near-optimality
for G-FBS and D-QSG.

Lemma 1:Consider anyn packets and any strictly increas-
ing function f(n) < n

2 . Suppose that D-QSG is applied to
schedule thesen packets. Then, there exists a finite integer
NX > 0 such that for alln ≥ NX , with probability no smaller

than1− 2(1− q)n−2f(n), D-QSG schedules at leastn− 2
√
n

packets, including the oldestf(n) packets.
We provide the proof of Lemma 1 in our online technical

report [9], and explain the importance of Lemma 1 as follows.
We first recall how DWM is shown to be rate-function delay-
optimal in [7]. Specifically, the authors of [7] compare DWM
with another policy FBS. In FBS, packets are filled into
frames with sizen − H in a FCFS manner, whereH is a
suitably chosen constant independent ofn. The FBS policy
attempts to serve the entire HOL frame whenever possible.
The authors of [7] first establish the rate-function optimality
of the FBS policy. Then, by showing that DWM dominates
FBS (i.e., DWM will serve the same packets in the entire HOL
frame whenever possible), the delay optimality of DWM then
follows.

However, this comparison approach will not work directly
for D-QSG. In order to serve all packets in a frame whenever
possible, one would need certain back-tracking (or rematching)
operations as in a typical maximum-weight matching algo-
rithm like DWM. For a simple greedy algorithm like D-QSG
that does not do back-tracking, it is unlikely to attain the same
probability of serving the entire frame. In fact, even if we
reduce the maximum frame size ton − 2

√
n, we are still

unable to show that D-QSG can serve the entire frame with a
sufficiently high probability. Thus, we cannot compare D-QSG
with FBS as in [7].

Fortunately, Lemma 1 provides an alternate avenue. Specif-
ically, for a frame of sizen, even though D-QSG may not
serve anygivensubset ofn− 2

√
n packets with a sufficiently

high probability, it will servesomesubset ofn−2
√
n packets

with a sufficiently high probability. Further, this subset must
contain the oldest2

√
n packets for a largen, if we choose

f(n) in Lemma 1 such thatf(n) ∈ ω(
√
n). Note that D-QSG

still leaves (at most)2
√
n packets to the next time-slot. In

the next time-slot, if we can make sure that D-QSG serves
all of these2

√
n leftover packets, which also happen to be

the oldest, we would then at worst suffer an additional one-
time-slot delay. Intuitively, we would then be able to show that
D-QSG attains a near-optimal delay rate-function.

To make this argument rigorous, we next compare D-QSG
with a new policy calledGreedy Frame-Based Scheduling
(G-FBS). Note that G-FBS is only for assisting our analysis,
and will not be used as an actual scheduling algorithm. In the
G-FBS policy, packets are grouped into frames. Each frame
has a capacity ofn0 = n − 2

√
n packets, i.e., at mostn0

packets can be filled into a frame. As packets arrive to the
system in each time-slot, the frames are created by filling the
packets sequentially. Specifically, packets that arrive earlier are
filled into the frame with a higher priority, and packets from
queues with a smaller index are filled with a higher priority
when multiple packets arrive in the same time-slot. Once the
current frame is fully filled, it will be closed and a new frame
will be open. We also assume that there is a “leftover” frame,
calledL-framefor simplicity, with a capacity of2

√
n packets.

The L-frame is for storing the packets that are not served in
the previous time-slot and are carried over to the current time-



slot. At the beginning of each time-slot, we combine the HOL
frame and the L-frame into a “super” frame, calledS-framefor
simplicity, with a capacity ofn packets. If there are less than
n packets in the S-frame, we can artificially add some dummy
packets with a delay of zero at the end of the S-frame so that
the S-frame is fully filled. In each time-slot, G-FBS runs the
D-QSG policy, but restricted to only then packets of the S-
frame. We call it asuccess, if D-QSG can schedule at leastn0

packets, including the oldestf(n) packets, from the S-frame,
wheref(n) < n

2 is any function that satisfies thatf(n) ∈ o(n)
and f(n) ∈ ω(

√
n). In each time-slot, if a success does not

occur, then no packets will be served. When there is a success,
the G-FBS policy serves all the packets that are scheduled by
D-QSG restricted to the S-frame in that time-slot.Lemma 1
implies that in each time-slot, a success occurs with probability
at least1−2(1−q)n−2f(n). When there is a success, all packets
from the S-frame, except for at most2

√
n = n− n0 packets,

are successfully served, and these served packets include the
oldestf(n) packets. The packets that are not served will be
stored in the L-frame, and carried over to the next time-slot
(except for the dummy packets, which will be discarded.)

Remark:Although G-FBS is similar to FBS policy [7], it
exhibits a key difference from FBS. In the FBS policy, in each
time-slot, either an entire frame (i.e., all the packets in the
frame) will be completely served or none of its packets will
be served. Hence, it does not allow packets to be carried over
to the next frame. In contrast, G-FBS allows leftover packets
and is thus more flexible in serving frames. This property is
the key reason that we can use a lower-complexity policy (like
D-QSG). On the other hand, it leads to a small gap between the
rate-functions achieved by G-FBS and delay-optimal policies
(e.g., FBS and DWM). Nonetheless, this gap can be well
characterized by using Lemma 1. Specifically, in the G-FBS
policy, an L-frame contains at most2

√
n packets, because at

most2
√
n packets are not served whenever there is a success.

Further, these (at most)2
√
n leftover packets will be among

the oldestf(n) packets (in the S-frame) in the next time-slot
whenn is large, due to our choice off(n) ∈ ω(

√
n). Hence,

another success will serve all the leftover packets. This implies
that at mostx + 1 successes are needed to completely serve
x frames, for any finite integerx > 0. In fact, this property
is the key reason for a one-time-slot shift in the guaranteed
rate-function by G-FBS, which leads to the near-optimal delay
performance, as we show in the following theorem.

Theorem 3:Under Assumptions 2 and 3, G-FBS policy
achieves a near-optimal rate-function, as given in (3).

The proof of Theorem 3 follows a similar line of argument
as in the proof for rate-function delay optimality of FBS (The-
orem 2 in [7]). We consider all the events that lead to the delay-
violation event{W (0) > b}, which can be caused by two
factors: bursty arrivals and sluggish service. On the one hand,
if there are a large number of arrivals in certain period, sayof
length t time-slots, which exceeds the maximum number of
packets that can be served in a period oft+ b+ 1 time-slots,
then it unavoidably leads to a delay violation. On the other
hand, suppose that there is at least one packet arrival at certain

time, and that under G-FBS, a success does not occur in any
of the followingb+1 time-slots (including the time-slot when
the packet arrives), then it also leads to a delay violation.Each
of these two possibilities has a corresponding rate-function for
its probability of occurring. Large-deviations theory then tells
us that the rate-function for delay violation is determinedby
the smallest rate-function among these possibilities (i.e., “rare
events occur in the most likely way”.) We can then show that
I(b) ≥ IU (b − 1) ≥ I∗(b − 1) for any integerb > 0, where
I(·) is the rate-function attained by G-FBS,IU (·) is the upper
bound that we derived in Section III, andI∗(·) is the optimal
rate-function, respectively. We provide the detailed proof of
Theorem 3 in our online technical report [9].

Remark:Note that the gap between the optimal rate-function
and the above near-optimal rate-function is likely to be quite
small. For example, in the special case ofi.i.d. 0-1 arrivals,
the near-optimal rate-function implies thatI(b) ≥ b

b+1IU (b) ≥
b

b+1I
∗(b), since we can compute thatIU (b) = (b+1) log 1

1−q

for this special case.
Finally, we make use of the following dominance property

of D-QSG over G-FBS.
Lemma 2:For any given sample path, by the end of any

time-slot, D-QSG has served every packet that G-FBS has
served.

We prove Lemma 2 by induction, and provide the proof in
our online technical report [9]. Then, the near-optimal rate-
function of D-QSG (Theorem 2) follows immediately from
Lemma 2 and Theorem 3.

C. Throughput Optimality

In this section, we establish throughput optimality of D-
QSG. Note that the rate-function is studied in the asymptotic
regime, i.e., whenn goes to infinity. Hence, even if the
convergence rate of the rate-function is fast (as is typically
the case), the throughput performance may be poor for small
to moderate values ofn. As a matter of fact for a fixedn, a
rate-function delay-optimal policy (e.g., FBS) may not even
be throughput-optimal. To this end, we are also interested in
the throughput performance of scheduling policies in general
non-asymptotic regimes (i.e., in a multi-channel system with
any fixed value ofn.)

It is well-known that the MaxWeight Scheduling policy [10],
[13]–[15] that maximizes the weighted sum of the rates (where
the weight is either queue length or delay) is throughput-
optimal in very general settings, including the multi-channel
system that we consider in this paper. Hence, we first discussa
simple extension of the Delay-based MaxWeight Scheduling
(D-MWS) policy [8], [10], [14], [15] for our multi-channel
system.

Let Sj(t) denote the set of queues that are connected to
serverSj in time-slot t, i.e., Sj(t) = {1 ≤ i ≤ n | Ci,j(t) =
1}, and letΓj(t) denote the subset of queues inSj(t) that
have the largest HOL delay in time-slott, i.e., Γj(t) , {i ∈
Sj(t) | Wi(t) = maxl∈Sj(t) Wl(t)}. We then specify the
operations of D-MWS as follows.



Delay-based MaxWeight Scheduling (D-MWS)policy: In
each time-slott, the scheduler assigns serverSj to serve queue
Qi(j,t) such thati(j, t) = min{i | i ∈ Γj(t)}. That is, each
server is selected to serve a connected queue that has the
largest HOL delay, breaking ties by picking the queue with
the smallest index when there are multiple such queues.

Remarks:We can prove throughput-optimality of D-MWS
in our multi-channel system, using fluid limit techniques by
following the same line of analysis used in [10] for a single-
channel system. The key insight we obtain from the proof in
[10] is that to achieve throughput optimality, it is sufficient
for each server to serve a connected queue that has the largest
weight in the fluid limits rather than in the original system.

Using the insight obtained above, we next show that D-QSG
is throughput-optimal in general non-asymptotic settings(for
a system with any fixedn).

Theorem 4:D-QSG policy is throughput-optimal under As-
sumption 1.

We prove Theorem 4 using the fluid limit techniques [10],
[16]. Different from D-MWS policy under which, each server
chooses to serve a connected queue with the largest HOL
delay, D-QSG allocates servers to serve the oldest packets first
one-by-one in an iterative manner. Hence, we can show that
the operations of D-QSG guarantees that each server chooses
a connected queue that has a large enough weight, and that in
the fluid limits the weight of the queue chosen by each server
is equal to that of the queue chosen under D-MWS. Then, we
complete the proof of Theorem 4, following a similar line of
analysis as in [10]. We provide the detailed proof in our online
technical report [9].

So far, we have shown that D-QSG not only achieves
a near-optimal rate-function, but also guarantees throughput
optimality, with a lower complexityO(n3) than that of DWM.
Interestingly, we will show next that just by switching the or-
der of examining the servers or the queues first, we can obtain
another policy that not only achieves the same performance of
throughput optimality and rate-function near-optimalityas that
of D-QSG, but also incurs an even lower complexityO(n2).

V. DELAY-BASED SERVER-SIDE-GREEDY (D-SSG)

In this section, we develop another greedy scheduling policy
calledDelay-based Server-Side-Greedy (D-SSG), under which
each server iteratively chooses to serve a connected queue that
has the largest HOL delay. We show that D-SSG is equivalent
to D-QSG under certain tie-breaking rules, in the sample-path
sense, and thus achieves the same performance ofthroughput
optimality and rate-function near-optimalityas that of D-QSG.
Further,D-SSG has an even lower complexityO(n2).

Before we describe the detailed operations of D-SSG, we
would like remark on D-MWS due to the similarity be-
tween D-MWS and D-SSG. Note that D-MWS is not only
throughput-optimal, but also has a low complexityO(n2).
However, we can show that D-MWS suffers from poor delay
performance. Specifically, following a similar line of argument
as in the proof of Theorem 3 in [3], we can show that D-
MWS yields a zero rate-function in certain scenarios (e.g.,

with i.i.d. 0-1 arrivals). We omit the proof here, and explain
the intuition behind it as follows. Under D-MWS, each server
chooses to serve a connected queue that has the largest HOL
delay without accounting for the decisions of the other servers.
This way of allocating servers leads to an unbalanced schedule.
That is, only a small fraction of the queues get served in
each time-slot. This inefficiency essentially leads to poordelay
performance.

Now, we describe the operations of our proposed D-SSG
policy. D-SSG is similar to D-MWS, in the sense that it also
allocates each server to serve a connected queue that has
the largest HOL delay. However, there is a key difference.
That is, instead of allocating the servers all at once as in D-
MWS, D-SSG allocates the servers one-by-one, accounting
for the scheduling decisions of the servers that are allocated
earlier. We will show thatthis critical difference results in a
substantial improvement in the delay performance.

We present some additional notations, and then specify the
detailed operations of D-SSG. In each time-slot, there aren

rounds, and in each round, one of the remaining servers is
allocated. LetQk

i (t), Z
k
i,l(t) andW k

i (t) = Zk
i,1(t) denote the

length of queueQi, the delay of thel-th packet ofQi, and the
HOL delay ofQi after k ≥ 1 rounds of server allocation in
time-slott, respectively. In particular, we haveQ0

i (t) = Qi(t),
Z0
i,l(t) = Zi,l(t), andW 0

i (t) = Wi(t). Recall thatSj(t) =

{1 ≤ i ≤ n | Ci,j(t) = 1}. Let Γk
j (t) denote the set of indices

of the queues that are connected to serverSj in time-slot t
and have the largest HOL delay at the beginning of thek-th
round in time-slott, i.e., Γk

j (t) , {i ∈ Sj(t) | W k−1
i (t) =

maxl∈Sj(t) W
k−1
l (t)}. Let i(j, t) denote the index of queue

that is served by serverSj in time-slot t under D-SSG.
Delay-based Server-Side-Greedy (D-SSG) policy:In each
time-slot t,

1) Initialize k = 1.
2) In the k-th round, allocate serverSk to serve queue

Qi(k,t), where i(k, t) = min{i | i ∈ Γk
k(t)}. That is,

in the k-th round, serverSk is allocated to serve the
connected queue that has the largest HOL delay, break-
ing ties by picking the queue with the smallest index if
there are multiple such queues. Then, update the length
of Qi(k,t) to account for service, i.e., setQk

i(k,t)(t) =
(

Qk−1
i(k,t)(t)− Ci(k,t),k(t)

)+

andQk
i (t) = Qk−1

i (t) for

all i 6= i(k, t). Also, update the HOL delay ofQi(k,t) to
account for service, i.e., setW k

i(k,t)(t) = Zk
i(k,t),1(t) =

Zk−1
i(k,t),2(t) if Qk

i(k,t)(t) > 0, and W k
i(k,t)(t) = 0

otherwise, and setW k
i (t) = W k−1

i (t) for all i 6= i(k, t).
3) Stop ifk equalsn. Otherwise, increasek by 1 and repeat

step 2.

Remark:Note that both D-SSG and D-QSG aim to allocate
each server to a queue with the largest HOL delay. The
key difference between D-SSG and D-QSG is that D-SSG
iterates over the servers first while D-QSG iterates over the
packets/queues first. This key difference leads to the fact
that D-SSG is simpler to implement and has an evenlower



complexityO(n2). Specifically, there aren rounds, and in each
round, it takes at mostn times for a server to find a connected
queue with the largest HOL delay.

It should be noted that the queue-length-based counterpart
of D-SSG, called Q-SSG, has been studied in [3], [4]. Under
Q-SSG, each server iteratively chooses to serve a connected
queue that has the largest length. It has been shown that Q-SSG
not only achieves throughput optimality, but also guarantees
a positive (queue-length)rate-function. However, their results
have the following limitations: 1) a positive rate-function may
not be good enough, since the gap between the guaranteed
rate-function and the optimal is unclear; 2) good queue-
length performance does not necessarily translate into good
delay performance; 3) their analysis was only carried out for
restricted arrival processes that arenot only i.i.d. across users,
but also in time. In contrast, in the following theorem, we show
that D-SSG achieves a rate-function that isnot only positive
but also near-optimal(in the sense of (3)) for more general
arrival processes, while guaranteeing throughput optimality.

Theorem 5:D-SSG policy is throughput-optimal under As-
sumption 1, and achieves a near-optimal rate-function as given
in (3) under Assumptions 2 and 3.

Theorem 5 follows immediately from the following lemma,
which states that D-SSG is equivalent to D-QSG under the
tie-breaking rules specified in this paper.

Lemma 3:For the same sample path, i.e., same realizations
of arrivals and channel connectivity, D-QSG and D-SSG pick
the same schedule in every time-slot.

We prove Lemma 3 by induction, and provide the proof
in our online technical report [9]. Note that under D-SSG,
in each round, when a server has multiple connected queues
that have the largest HOL delay, we break ties by picking the
queue with the smallest index. Presumably, one can take other
arbitrary tie-breaking rules. However, it turns out that directly
analyzing the rate-function for a greedy policy from the server
side (like D-SSG) is much more difficult than that for a greedy
policy from the queue side (like D-QSG). For example, as
we mentioned earlier, the authors of [3], [4] were only able
to prove a positive (queue-length) rate-function for Q-SSG
in more restricted scenarios. Hence, our choice of the above
simple tie-breaking rule is in fact quite important to leading
to the equivalence property in Lemma 3, which plays a key
role in proving the rate-function near-optimality for D-SSG.
Nevertheless, we would expect that one can choose arbitrary
tie-breaking rules in practice.

So far, we have shown that our proposed low-complexity
greedy policies achieve both throughput optimality and rate-
function near-optimality. In the next section, we will show
through simulations that these greedy policiesnot only exhibit
a near-optimal rate-function, but also empirically are virtually
indistinguishable from the delay-optimal policy DWM in many
scenarios.

VI. SIMULATION RESULTS

In this section, we conduct simulations to compare schedul-
ing performance of our proposed greedy policies with DWM,

D-MWS, and Q-SSG. We simulate these policies in Java
and compare the empirical probabilities that the largest HOL
delay in the system in any given time-slot exceeds an integer
thresholdb, i.e.,P(W (0) > b).

For the arrival processes, we consider bursty arrivals that
are driven by a two-state Markov chain and that are correlated
over time. (We obtained similar results fori.i.d. arrivals, and
do not report them here due to space constraints.) We adopt
the same parameter settings as in [7]. For each user, there are 5
packet-arrivals when the Markov chain is in state 1, and there
is no arrivals when it is in state 2. The transition probability
of the Markov chain is given by the matrix[0.5, 0.5; 0.1, 0.9],
and the state transitions occur at the end of each time-slot.
The arrivals for each user are correlated over time, but they
are independent across users. For the channel model, we first
assumei.i.d. ON-OFF channels with unit capacity, and set
q = 0.75. We later consider more general scenarios with
heterogeneous users and bursty channels that are correlated
over time. We run simulations for a system withn servers and
n users, wheren ∈ {10, 20, . . . , 100}. The simulation period
lasts for107 time-slots for each policy and each system.

The results are summarized in Fig. 2, where the complexity
of each policy is also labeled. In order to compare the rate-
function I(b) as defined in Eq. (2), we plot the probability
over the number of channels or users, i.e.,n, for a fixed value
of thresholdb. The negative of the slopes of the curves can
be viewed as the rate-function for each policy. In Fig. 2, we
report the results only forb = 4, and the results are similar
for other values of thresholdb. From Fig. 2, we observe that
both D-QSG and D-SSG are virtually indistinguishable from
DWM, which is known to be rate-function delay-optimal. This
not only supports our theoretical results that both D-QSG
and D-SSG guarantee a near-optimal rate-function, but also
implies that both D-QSG and D-SSG empirically perform very
well while enjoying a lower complexity. Further, we observe
that D-SSG consistently outperforms its queue-length-based
counterpart, Q-SSG, despite that in [3], it has been shown
through simulations that Q-SSGempirically achieves near-
optimal queue-length performance. This provides a further
evidence that good queue-length performance does not neces-
sarily translate into good delay performance. The results also
show that D-MWS yields a zero rate-function, as expected.

Further, we evaluate scheduling performance of different
policies in more realistic scenarios, where users arehetero-
geneousand channels arecorrelated over time. Specifically,
we consider channels that can be modeled as a two-state
Markov chain, where the channel is “ON” when the Markov
chain is in state 1, and is “OFF” when it is in state 2. This
type of channel model can be viewed as a special case of
the Gilbert Elliot model that is widely used for describing
bursty channels. We assume that there are two classes of
users: users with an odd index are callednear-users, and users
with an even index are calledfar-users. Different classes of
users see different channel conditions: near-users see better
channel condition, and far-users see worse channel condition.
We assume that the transition probability matrices of channels
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Fig. 2. Performance comparison of different scheduling policies in the case
with homogeneousi.i.d. channels, forb = 4.
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Fig. 3. Performance comparison of different scheduling policies in the case
with heterogeneous users and Markov-chain driven channels, for b = 4.

for near-users and far-users are[0.833, 0.167; 0.5, 0.5] and
[0.5, 0.5; 0.167, 0.833], respectively. The arrival processes are
assumed to be the same as in the previous case.

The results are summarized in Fig. 3. We observe similar
results as in the previous case with homogeneous users and
i.i.d. channels in time. In particular, D-QSG and D-SSG
exhibit a rate-function that is the same as that of DWM,
although their delay performance is slightly worse. Note that
in this scenario, a rate-function delay-optimal policy isnot
known yet. Hence, for future work, it would be interesting to
understand how to design rate-function delay-optimal or near-
optimal policies in general scenarios.

VII. C ONCLUSION

In this paper, we developed low-complexity greedy schedul-
ing policies that not only achieve throughput optimality, but
also guarantee a near-optimal delay rate-function, for multi-
channel wireless networks. Our studies reveal that throughput
optimality is relatively easier to achieve in such multi-channel
systems, while there exists an explicit trade-off between com-
plexity and delay performance. If one can bear a minimal
drop in the delay performance, lower-complexity scheduling
policies can be exploited.

For future work, it would be interesting to explore whether
one can find low-complexity scheduling policies that can
guarantee both throughput and delay optimality. Further, it is
still unclear how to design scheduling policies (even with a

high complexity) that can guarantee optimal or near-optimal
delay performance in more realistic scenarios. Therefore,it is
important to investigate the scheduling problem in such multi-
channel systems with more general models, e.g., accounting
for multi-rate channels that are correlated over time, instead
of i.i.d. ON-OFF channels, as well as heterogeneous users and
channels with different statistics.
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